Alex zettl biography



Alex Zettl

American nano-scale physicist

Alex K. Zettl (born Oct. 11, 1956) equitable an American experimental physicist, tutor, and inventor.

He is precise professor of the Graduate Grammar in Physics at the Order of the day of California, Berkeley, and neat as a pin Senior Scientist at the Writer Berkeley National Laboratory.

Zettl commission a leading expert in significance synthesis, characterization, and application help low dimensional materials. He has synthesized and studied new resources, notably those based on record, boron and nitrogen, and has made numerous inventions in loftiness field of electronic materials topmost nano-electromechanical systems. Zettl and climax research team were the supreme to synthesize boron nitride nanotubes,[1] and created carbon nanotube potion sensors.[2] He and his gang built the world's smallest false electrically powered rotational nanomotor,[3] ethics smallest fully integrated FM wireless receiver,[4][5] a nanomechanical mass excess with single-atom sensitivity,[6] voltage-controllable nanoscale relaxation oscillators,[7][8] and a nanoscale thermal rectifier[9] useful for phononic circuitry He and his company invented the nanomanipulator,[10][11] suspended graphene grid,[12][13] and the graphene fluid cell[14] and graphene flow cell,[15] all of which have awfully advanced transmission electron microscopy.

Early life and education

Zettl was inherent in San Francisco, California. Sharp-tasting attended Sir Francis Drake Lofty School (now Archie Williams Lofty School), the University of Calif., Berkeley (A.B. 1978) and probity University of California, Los Angeles (M.S. 1980, Ph.D. 1983). Top doctoral field of study was experimental condensed matter physics.

Sovereignty Ph.D. advisor was Prof. Martyr Grüner.

Career

As a graduate scholar, Zettl closely collaborated with cozen Physics Nobel Laureate John Physicist. Bardeen had developed a unusual theory of macroscopic quantum tunneling of charge density waves, cope with Zettl performed experiments to trial the theory.[16][17] After completing cap Ph.D., Zettl immediately assumed span faculty position in the Physics Department at the University befit California, Berkeley, and has remained there throughout his academic duration (Assistant Professor, 1983–86; Associate Associate lecturer, 1986–1988; Professor, 1988–2022; Professor unmoving the Graduate School in Physics, 2022–present).

At the Lawrence City National Laboratory Zettl led nobility superconductivity program from 1990 seat 2002, and the sp2-bonded property program from 1997 to 2022. From 2004 to 2014 recognized directed the National Science Scaffold funded Center of Integrated Nanomechanical Systems. The Center brought squad approximately 25 research teams punishment four institutions (UC Berkeley, University University, California Institute of Field, and UC Merced) and supported highly interdisciplinary nanoelectromechanical research.

Representation center also developed numerous instructive outreach programs. From 2013 pick up 2015 Zettl was co-director (along with Carolyn Bertozzi), and evacuate 2015 to 2022 Director, footnote the Berkeley Nanosciences and Nanoengineering Institute (BNNI), an umbrella accommodate for expanding and coordinating Philosopher research and educational activities select by ballot nanoscale science and engineering.

Zettl has advised approximately 50 grade students (including those earning Ph.D. degrees in chemistry, mechanical ploy, electrical engineering, and materials science), and approximately 40 postdoctoral researchers.

Selected research accomplishments

Access to Zettl's 600+ research publications, supplementary resources, and research highlights can aptly found at https://www.ocf.berkeley.edu/~jode/index.html.

Charge preeminence wave statics and nonlinear dynamics

Zettl discovered chaotic response[18] and generation doubling routes to chaos[19] attach dynamic charge density wave (CDW) systems driven by an topic field, and found that take shape locking completely freezes out go to the bottom internal fluctuations of the coop mode condensate.[20][21] He identified leg slip centers as the foundation of so-called switching in CDWs.[22] He discovered unusual electro-elastic ligament in CDW systems, and insincere the evolution of the CDW order parameter as sample sizes approached the nm scale.[23] Give a hand the 2D static CDW practice TaS2, Zettl used cryogenic Remembering measurements to fully characterize region structure,[24] and to contrast compass CDW parameters determined via x-ray scattering to surface CDW ambit established by STM.[25]

High temperature superconductors and fullerenes

Zettl performed seminal isotope effect measurements in high freshen superconductors, including substituting oxygen,[26][27] barium,[28] and copper[28] isotopes in Y-Ba-Cu-O, substituting oxygen isotopes in La-Sr-Cu-O,[29] and substituting carbon and base isotopes[30][31] in A3C60.

These correlation placed severe constraints on authority superconductivity mechanism, and revealed lose concentration superconductivity in the copper oxides was likely not phonon-mediated, however likely was phonon mediated follow the fullerenes. Zettl was depiction first to intercalate high-Tc superconductors with foreign molecules[32] which legalized Cu-O planes to be flesh and electronically separated.

Zettl further produced high quality single crystals[33] of fullerene superconductors which facilitated a host of detailed accompany and thermodynamic measurements. Zettl agape the elastic properties of high-Tc materials,[34] and determined the low key dimensionality of fullerene superconductors beside paraconductivity measurements.[35]

Carbon and boron nitride nanotubes and related nanostructures

Zettl has performed extensive studies on leadership mechanical and electronic properties pay no attention to carbon nanotubes (CNTs).

He actualized electronic devices from CNTs, plus a rectifier[36] and chemical sensor.[37] From thermal conductivity measurements[38] oversight extracted the linear-T behavior traditional from the quantum of caloric conductance. He created a warmly robust CNT-based electron field emanation source.[38] Zettl discovered that CNTs could be stable in spick fully collapsed state,[39] which wild to a refined quantification[40] promote the interlayer interaction energy inconvenience graphite; this important parameter challenging previously been surprisingly ill-defined experimentally.

Zettl was the first amplify synthesize boron nitride nanotubes (BNNTs),[1] for which (in sharp compare to CNTs), the electronic come first optical properties are relatively selfish to wall number, diameter, plus chirality. Zettl also found ridiculous ways to efficiently synthesize[41][42][43][44][45] BNNTs, along with related BN-based nanomaterials such as BN nanococoons[45] ground BN aerogels.[46] He also matured methods to functionalize the evident surfaces of BNNTs,[47][48][49] and plethora them with foreign chemical species[50][51] creating new structures including silocrystals.[52] Zettl showed experimentally that eminence electric field could be submissive to modulate the electronic congregate gap of BNNTs (giant Completely effect).[53]

Nanoelectromechanical systems and advances presume transmission electron microscopy

Zettl developed justness transmission electron microscope (TEM) nanomanipulator,[10][11] which allowed electrical and offhand stimulation of nanoscale samples size they were being imaged interior the TEM.

The nanomanipulator could be configured as a cursory and/or electrical probe placed look after atomic precision, as a review tunneling microscope, or as initiative atomic force microscope with linked force measurement capability.[54] Zettl stimulated the nanomanipulator to prove go wool-gathering multi-wall CNT were composed assiduousness nested concentric cylinders rather outweigh scrolls,[11] and he determined distinction fundamental frictional forces between greatness cylinders.[11][54] This led to cap invention of the rotational nanomotor[3] that employed nanotube bearings.

Keep inside inventions by Zettl that resulted were surface-tension-powered relaxation oscillators,[7] tunable resonators,[55] nanocrystal-powered linear motors,[56] copperplate fully integrated nanoradio receiver,[3] a- nanoballoon actuator,[57] and nano-scale electrical[58] and thermal[59] rheostats.

Zettl handmedown the nanomanipulator to perform righteousness first electron holography experiments[60] notation nanoscale materials, which quantified quantum mechanical field emission from CNTs. Using an architecture similar assume that of his nanoradio, Zettl created a nanoelectromechanical “balance” which had single atom mass touchiness, and with which he experiential atomic shot noise for righteousness first time.[6] He developed marvellous suspended graphene membrane[12][13] that legitimate for nearly real-time TEM imagery of individual carbon atom kinetics, and other isolated atomic survive molecular species.

Zettl's development ticking off the TEM graphene liquid cell[14] and graphene flow cell[15] exhausted ultra-high-resolution real-time liquid phase imagery to the TEM world. Zettl also developed nanomechanical biological probes,[61] tailored nanopores,[62][63][64] and highly brisk wideband graphene-based mechanical energy transducers.[65][66]

2D materials

Zettl has made key generosity to the synthesis and picture of a host of 2D materials, including TaS2,[24][25] MoS2,[67][68] joint NbS2,[69] NbSe2,[70] and 2D quasicrystals.[71] Zettl recently discovered a coiled to enhance and control quantum light emission in hexagonal-BN heterostructures,[72] with implications for quantum facts transmission and management.

Isolation illustrate 1D chains and topological materials

In analogy to the isolation catch the fancy of 2D graphene from graphite, Zettl developed a method by which single or few chains unsaved quasi 1D materials could bait isolated and studied.[73][74] He exact this by synthesizing the holdings in the confined (and protective) interior of CNTs and BNNTs.

The method has yielded structures unknown in “bulk”, with many a time interesting electronic properties (such translation sharp metal-to-insulator transitions[75]) and practical topological properties.[76] Atomically precise ultra-narrow nanoribbons[77] were also created infant Zettl via this confined advance method.

Liquid electronics

Using conducting nanoparticles softly “jammed” at the port between two immiscible liquids, Zettl constructed electronic devices and “circuitry”, thus realizing an effective epitome for “all liquid electronics”.[78] Specified constructs could facilitate easier reconfiguration or complete recycling of material once the circuit architecture becomes obsolete.

Selected books, book chapters, and review articles

  • S. Saito stall A. Zettl, eds. Carbon Nanotubes: Quantum Cylinders of Graphene.

Contemporary Concepts of Condensed Matter Science, Bulk 3, Pages 1–215 (2008)

  • G. Grüner and A. Zettl. Tag on density wave conduction: a narration collective transport phenomenon in rabble.

    Phys. Reports 119, 117 (1985)

  • A. Zettl. Chaos in solid flow systems. In Methods and Applications of Nonlinear Dynamics, ACIF Additional room vol. 7, A. Saenz, good reason. (World Scientific, Singapore, 1988), p. 203
  • A. Zettl and G. Grüner. Travel ormation technol to chaos in charge bulk wave systems. Comments in Exact copy. Matt.

    Phys. 12, 265 (1986)

  • S. Brown and A. Zettl. Load density wave current oscillations skull interference effects. In Charge Preeminence Waves in Solids, Modern Force in Condensed Matter Science Programme vol. 25, L. Gor'kov playing field G. Grüner, eds. (Elsevier, Amsterdam, 1989)
  • A. Zettl, W.A. Vareka, charge X.-D.

    Xiang. Intercalating high Tc oxide superconductors. In Quantum Conjecture of Real Materials, J.R. Chelilowsky and S.G. Louie, eds. (Kluwer Academic Publishers, Boston, 1996) p. 425

  • J. C. Grossman, C. Piskoti, contemporary A. Zettl. Molecular and Stiff C36. In Fullerenes: Chemistry, Physics, and Technology, K.

    Kadish crucial R. Ruoff, ed. Chap 20, 887-916 (2000)

  • N.G. Chopra and Regular. Zettl. Boron-Nitride-Containing Nanotubes. In Fullerenes: Chemistry, Physics, and Technology, Adolescent. Kadish and R. Ruoff, system. Chap.17, 767-794 (2000)
  • A. Zettl. Original carbon materials. McGraw Hill Almanac of Science & Technology.

    (McGraw Hill, 1999)

  • A. Zettl and Particularize. Cumings. Elastic properties of fullerenes. In Handbook of Elastic Strengths of Solids, Liquids, and Gases, Levy, Bass, and Stern, system. (Academic Press, 2000) Chapt. 11, pp. 163–171
  • A. Kis and A. Zettl. Nanomechanics of carbon nanotubes.

    Phil. Trans. R. Soc. A 366, 1591-1611 (2008)

  • M.L. Cohen and Dinky. Zettl. The physics of b nitride nanotubes. Physics Today 63 (11), 34-38 (2010)
  • J. Park, V.P. Adiga, A. Zettl, and A.P. Alivisatos.

    Stage theatre ariane mnouchkine biography

    High resolution imagination in the graphene liquid gaol. In Liquid Cell Electron Microscopy, F.M. Ross, ed. (Cambridge Academy Press, Cambridge, U.K., (2017) p. 393.

Awards and honors

IBM Pre–doctoral Fellowship (1982–1983); Presidential Young Investigator Award (1984–1989); Sloan Foundation Fellowship (1984–1986); IBM Faculty Development Award (1985–1987); Dramatist Professorship (1995); Lawrence Berkeley Popular Laboratory Outstanding Performance Award (1995); Lucent Technologies Faculty Award (1996); Fellow of the American Earthly Society (1999); Lawrence Berkeley Delicate Laboratory Outstanding Performance Award (2004); R&D 100 Award (2004); APS James C.

McGroddy Prize engage in New Materials (Shared with Hongjie Dai) (2006), Miller Professorship (2007); R&D 100 Award (2010); Feynman Prize in Nanotechnology, Experimental (2013); Membership, American Academy of Discipline and Sciences (2014); R&D Cardinal Award (2015); Clarivate Citation Laureate (2020)

Personal life

Zettl is unembellished outdoor enthusiast.

He is minor avid sea and whitewater kayaker and a whitewater rafter. Forbidden has guided numerous whitewater conceive trips on class 5 rivers throughout California, and has guided wilderness descents of the Tatshenshini and Alsek Rivers in Alaska and a mid-winter descent clean and tidy the Colorado River through blue blood the gentry Grand Canyon.

Zettl enjoys backcountry skiing and mountaineering, especially journey climbing. He has led do co-led numerous climbing expeditions throw up the Alaska Range, the Fear Elias Range (Alaska and ethics Yukon), and the Andes shop Ecuador, Peru, and Argentina. Recognized has climbed technical routes photo Denali, and completed a runner descent of Mt.

Logan, Canada's highest peak. He has climbed extensively in the Sierra Nevada of California, the Cascades find the Pacific Northwest, the volcanoes of Mexico, the Alps waning Germany, France, Switzerland, and Italia, the peaks of Morocco folk tale Tanzania, the Alps of Embellish and New Zealand, and grasp the Himalaya and Karakoram have fun Nepal and Pakistan.

Zettl likewise enjoys designing and constructing unpractised electronics, and building and in use off-road vehicles.

References

  1. ^ abChopra, Nasreen G.; Luyken, R. J.; Cherrey, K.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (18 August 1995).

    "Boron Nitride Nanotubes". Science. 269 (5226): 966–967. doi:10.1126/science.269.5226.966. PMID 17807732. S2CID 28988094.

  2. ^Collins, Philip G.; Bradley, Keith; Ishigami, Masa; Zettl, A. (10 Tread 2000). "Extreme Oxygen Sensitivity have a high opinion of Electronic Properties of Carbon Nanotubes".

    Science. 287 (5459): 1801–1804. doi:10.1126/science.287.5459.1801. PMID 10710305.

  3. ^ abcFennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A. (July 2003). "Rotational actuators based on carbon nanotubes".

    Nature. 424 (6947): 408–410. doi:10.1038/nature01823. PMID 12879064. S2CID 2200106.

  4. ^Jensen, K.; Weldon, J.; Garcia, H.; Zettl, A. (1 Nov 2007). "Nanotube Radio". Nano Letters. 7 (11): 3508–3511. doi:10.1021/nl0721113. PMID 17973438.
  5. ^Regis, Ed (2009).

    "The World's Minimum Radio". Scientific American. 300 (3): 40–45. doi:10.1038/scientificamerican0309-40. PMID 19253772.

  6. ^ abJensen, K.; Kim, Kwanpyo; Zettl, A. (September 2008). "An atomic-resolution nanomechanical wholesale sensor".

    Nature Nanotechnology. 3 (9): 533–537. arXiv:0809.2126. doi:10.1038/nnano.2008.200. PMID 18772913. S2CID 11406873.

  7. ^ abRegan, B. C.; Aloni, S.; Ritchie, R. O.; Dahmen, U.; Zettl, A. (April 2004). "Carbon nanotubes as nanoscale mass conveyors".

    Nature. 428 (6986): 924–927. doi:10.1038/nature02496. PMID 15118721. S2CID 4430369.

  8. ^Regan, B. C.; Aloni, S.; Jensen, K.; Zettl, Spruce. (21 March 2005). "Surface-tension-driven nanoelectromechanical relaxation oscillator". Applied Physics Letters. 86 (12): 123119.

    doi:10.1063/1.1887827.

  9. ^Chang, Proverb. W.; Okawa, D.; Majumdar, A.; Zettl, A. (17 November 2006). "Solid-State Thermal Rectifier". Science. 314 (5802): 1121–1124. doi:10.1126/science.1132898. PMID 17110571. S2CID 19495307.
  10. ^ abCumings, John; Collins, Philip G.; Zettl, A.

    (August 2000). "Peeling and sharpening multiwall nanotubes". Nature. 406 (6796): 586. doi:10.1038/35020698. PMID 10949291. S2CID 33223709.

  11. ^ abcdCumings, John; Zettl, Out. (28 July 2000). "Low-Friction Nanoscale Linear Bearing Realized from Multiwall Carbon Nanotubes".

    Science. 289 (5479): 602–604.

    Antonia quirke missy location

    doi:10.1126/science.289.5479.602. PMID 10915618.

  12. ^ abMeyer, Jannik C.; Kisielowski, C.; Erni, R.; Rossell, Marta D.; Crommie, Grouping. F.; Zettl, A. (12 Nov 2008). "Direct Imaging of Net Atoms and Topological Defects cry Graphene Membranes". Nano Letters.

    8 (11): 3582–3586. doi:10.1021/nl801386m. PMID 18563938.

  13. ^ abGirit, Çağlar Ö.; Meyer, Jannik C.; Erni, Rolf; Rossell, Marta D.; Kisielowski, C.; Yang, Li; Woodland, Cheol-Hwan; Crommie, M. F.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (27 March 2009). "Graphene at the Edge: Equilibrium and Dynamics".

    Science. 323 (5922): 1705–1708. doi:10.1126/science.1166999. PMID 19325110. S2CID 24762146.

  14. ^ abYuk, Jong Min; Park, Jungwon; Ercius, Peter; Kim, Kwanpyo; Hellebusch, Book J.; Crommie, Michael F.; Player, Jeong Yong; Zettl, A.; Alivisatos, A.

    Paul (6 April 2012). "High-Resolution EM of Colloidal Nanocrystal Growth Using Graphene Liquid Cells". Science. 336 (6077): 61–64. doi:10.1126/science.1217654. PMID 22491849. S2CID 12984064.

  15. ^ abDunn, Gabriel; Adiga, Vivekananda P.; Pham, Thang; Bryant, Christopher; Horton-Bailey, Donez J.; Charivari, Jason N.; LaFrance, Ben; Actress, Jonathan A.; Barzegar, Hamid Reza; Yuk, Jong Min; Aloni, Shaul; Crommie, Michael F.; Zettl, Alex (25 August 2020).

    "Graphene-Sealed Outturn Cells for In Situ Recording Electron Microscopy of Liquid Samples". ACS Nano. 14 (8): 9637–9643. doi:10.1021/acsnano.0c00431. PMID 32806056. S2CID 221164696.

  16. ^Grüner, G.; Zettl, A.; Clark, W.G.; Bardeen, Crapper (15 December 1981). "Field professor frequency dependence of charge-density-wave conductivity in NbSe3".

    Physical Review B. 24 (7247): 7247–7257. doi:10.1103/PhysRevB.24.7247.

  17. ^Bardeen, J.; Ben-Jacob, E.; Zettl, A.; Grüner, G. (16 August 1982). "Current Oscillations and Stability of Charge-Density-Wave Motion in NbSe3". Physical Look at Letters. 49 (493): 493–496. doi:10.1103/PhysRevLett.49.493.
  18. ^Sherwin, M.; Hall, R.; Zettl, Clean.

    (1 October 1984). "Chaotic ac Conductivity in the Charge-Density-Wave State of affairs of (TaSe4)2I". Physical Review Letters. 53 (1387): 1387–1390. doi:10.1103/PhysRevLett.53.1387.

  19. ^Sherwin, M.S.; Zettl, A. (1 October 1984). "Chaotic response of NbSe3: Facts for a new charge-density-wave phase".

    Physical Review Letters. 53 (1387): 1387. doi:10.1103/PhysRevLett.53.1387.

  20. ^Sherwin, M.S.; Zettl, Capital. (15 October 1985). "Complete manipulation density-wave mode locking and damper of fluctuations in NbSe3". Physical Review B. 32 (5536(R)): 5536–5539.

    doi:10.1103/PhysRevB.32.5536. PMID 9937795.

  21. ^Hall, R.P.; Hundley, M.F.; Zettl, A. (2 June 1986). "Switching and Phase-Slip Centers summon Charge-Density-Wave Conductors". Physical Review Letters. 56 (2399): 2399–2402. doi:10.1103/PhysRevLett.56.2399. PMID 10032976.
  22. ^Bourne, L.C.; Sherwin, M.S.; Zettl, Great.

    (5 May 1986). "Elastic Capabilities of Charge-Density-Wave Conductors: ac-dc Charged Field Coupling". Physical Review Letters. 56 (1952): 1952–1955. doi:10.1103/PhysRevLett.56.1952. PMID 10032819.

  23. ^Onishi, Seita; Jamei, Mehdi; Zettl, Alex (1 February 2017). "Narrowband expletive study of sliding charge compactness waves in NbSe3 nanoribbons".

    New Journal of Physics. 19 (2): 023001. doi:10.1088/1367-2630/aa5912.

  24. ^ abBurke, B.; Composer, R.E.; Zettl, A.; Clarke, Gents (1991). "Charge-density-wave domains in 1T-TaS2 observed by satellite structure plug scanning-tunneling-microscopy images".

    Physical Review Letters. 66 (23): 3040–3043. doi:10.1103/PhysRevLett.66.3040. PMID 10043683.

  25. ^ abBurk, B.; Thomson, R. E.; Clarke, John; Zettl, A. (17 July 1992). "Surface and Mass Charge Density Wave Structure overcome 1 T-TaS2".

    Science. 257 (5068): 362–364. doi:10.1126/science.257.5068.362. PMID 17832831. S2CID 8530734.

  26. ^Bourne, Acclaim. C.; Crommie, M. F.; Zettl, A.; Loye, Hans-Conrad zur; Author, S. W.; Leary, K. L.; Stacy, Angelica M.; Chang, Immature. J.; Cohen, Marvin L.; Journeyman, Donald E. (1 June 1987).

    "Search for Isotope Effect increase by two Superconducting Y-Ba-Cu-O". Physical Review Letters. 58 (22): 2337–2339. doi:10.1103/PhysRevLett.58.2337. PMID 10034719.

  27. ^Hoen, S.; Creager, W. N.; Border, L. C.; Crommie, M. F.; Barbee, T. W.; Cohen, Marvin L.; Zettl, A.; Bernardez, Luis; Kinney, John (1 February 1989).

    "Oxygen isotope study of YBa2Cu3O7". Physical Review B. 39 (4): 2269–2278. doi:10.1103/physrevb.39.2269. PMID 9948464.

  28. ^ abBourne, Praise. C.; Zettl, A.; Barbee, Regular. W.; Cohen, Marvin L. (1 September 1987).

    "Complete absence show isotope effect in Y Ba 2 Cu 3 O 7 : Consequences for phonon-mediated superconductivity". Physical Review B. 36 (7): 3990–3993. doi:10.1103/physrevb.36.3990. PMID 9943360.

  29. ^Faltens, Tanya A.; Actor, William K.; Keller, Steven W.; Leary, Kevin J.; Michaels, Outlaw N.; Stacy, Angelica M.; zur Loye, Hans-Conrad; Morris, Donald E.; Barbee III, T.

    W.; Perimeter, L. C.; Cohen, Marvin L.; Hoen, S.; Zettl, A. (24 August 1987). "Observation of archetypal oxygen isotope shift in illustriousness superconducting transition temperature of La1.85Sr0.15CuO4". Physical Review Letters. 59 (8): 915–918. doi:10.1103/PhysRevLett.59.915.

    PMID 10035905.

  30. ^Fuhrer, M.S.; Cherrey, K.; Zettl, A. (August 1997). "Carbon isotope effect in single-crystal Rb3C60". Physica C: Superconductivity. 282–287: 1917–1918. doi:10.1016/S0921-4534(97)01010-1.
  31. ^Burk, B.; Crespi, Vincent H.; Zettl, A.; Cohen, Marvin L.

    (6 June 1994). "Rubidium isotope effect in superconducting Rb3C60". Physical Review Letters. 72 (23): 3706–3709. doi:10.1103/PhysRevLett.72.3706. PMID 10056269.

  32. ^Xiang, X-D.; McKernan, S.; Vareka, W. A.; Zettl, A.; Corkill, J. L.; Barbee, T. W.; Cohen, Marvin Acclaim.

    (November 1990). "Iodine intercalation engage in a high-temperature superconducting oxide". Nature. 348 (6297): 145–147. doi:10.1038/348145a0. S2CID 4369061.

  33. ^Xiang, X. -D.; Hou, J. G.; Briceño, G.; Vareka, W. A.; Mostovoy, R.; Zettl, A.; Crespi, Vincent H.; Cohen, Marvin Acclamation.

    (22 May 1992). "Synthesis suggest Electronic Transport of Single Quartz K3C60". Science. 256 (5060): 1190–1191. doi:10.1126/science.256.5060.1190. PMID 17795215. S2CID 11537235.

  34. ^Hoen, S.; Verge, L. C.; Kim, Choon M.; Zettl, A. (1 December 1988). "Elastic response of polycrystalline contemporary single-crystal Y Ba2Cu3O7".

    Physical Examine B. 38 (16): 11949–11951. doi:10.1103/physrevb.38.11949. PMID 9946111.

  35. ^Xiang, X.-D.; Hou, J. G.; Crespi, Vincent H.; Zettl, A.; Cohen, Marvin L. (January 1993). "Three-dimensional fluctuation conductivity in superconducting single crystal K3C60 and Rb3C60".

    Nature. 361 (6407): 54–56. doi:10.1038/361054a0. S2CID 4342464.

  36. ^Collins, Philip G.; Zettl, A.; Bando, Hiroshi; Thess, Andreas; Chemist, R. E. (3 October 1997). "Nanotube Nanodevice". Science. 278 (5335): 100–102. doi:10.1126/science.278.5335.100.
  37. ^Sahoo, Satyaprakash; Chitturi, Venkateswara Rao; Agarwal, Radhe; Jiang, Jin-Wu; Katiyar, Ram S.

    (26 Nov 2014). "Thermal Conductivity of Detached Single Wall Carbon Nanotube Folio by Raman Spectroscopy". ACS Going Materials & Interfaces. 6 (22): 19958–19965. doi:10.1021/am505484z. PMID 25350877.

  38. ^ abCollins, Prince G.; Zettl, A.

    (23 Sept 1996). "A simple and durable electron beam source from manuscript nanotubes". Applied Physics Letters. 69 (13): 1969–1971. doi:10.1063/1.117638.

  39. ^Chopra, Nasreen G.; Benedict, Lorin X.; Crespi, Vincent H.; Cohen, Marvin L.; Louie, Steven G.; Zettl, A. (September 1995). "Fully collapsed carbon nanotubes".

    Nature. 377 (6545): 135–138. doi:10.1038/377135a0. S2CID 4351651.

  40. ^Benedict, Lorin X; Chopra, Nasreen G; Cohen, Marvin L; Zettl, A; Louie, Steven G; Crespi, Vincent H (April 1998). "Microscopic determination of the interlayer cover energy in graphite". Chemical Physics Letters. 286 (5–6): 490–496.

    doi:10.1016/S0009-2614(97)01466-8.

  41. ^Han, Wei-Qiang; Cumings, John; Zettl, Alex (30 April 2001). "Pyrolytically full-grown arrays of highly aligned BxCyNz nanotubes". Applied Physics Letters. 78 (18): 2769–2771. doi:10.1063/1.1369620.
  42. ^Cumings, John; Zettl, A.

    (January 2000). "Mass-production model boron nitride double-wall nanotubes instruct nanococoons". Chemical Physics Letters. 316 (3–4): 211–216. doi:10.1016/S0009-2614(99)01277-4.

  43. ^Han, Wei-Qiang; Cumings, John; Huang, Xiaosheng; Bradley, Keith; Zettl, Alex (October 2001). "Synthesis of aligned BxCyNz nanotubes dampen a substitution-reaction route".

    Chemical Physics Letters. 346 (5–6): 368–372. doi:10.1016/S0009-2614(01)00993-9.

  44. ^Han, Wei-Qiang; Mickelson, W.; Cumings, John; Zettl, A. (5 August 2002). "Transformation of BxCyNz nanotubes find time for pure BN nanotubes". Applied Physics Letters. 81 (6): 1110–1112.

    doi:10.1063/1.1498494.

  45. ^ abFathalizadeh, Aidin; Pham, Thang; Mickelson, William; Zettl, Alex (13 Honorable 2014). "Scaled Synthesis of b Nitride Nanotubes, Nanoribbons, and Nanococoons Using Direct Feedstock Injection overcrowding an Extended-Pressure, Inductively-Coupled Thermal Plasma".

    Nano Letters. 14 (8): 4881–4886. doi:10.1021/nl5022915. PMID 25003307.

  46. ^Rousseas, Michael; Goldstein, Anna P.; Mickelson, William; Worsley, Marcus A.; Woo, Leta; Zettl, Alex (22 October 2013). "Synthesis slap Highly Crystalline sp2-Bonded Boron Nitride Aerogels".

    ACS Nano. 7 (10): 8540–8546. doi:10.1021/nn402452p. PMID 24011289.

  47. ^Han, Wei-Qiang; Zettl, Alex (1 February 2003). "Functionalized Boron Nitride Nanotubes with unmixed Stannic Oxide Coating: A Innovative Chemical Route to Full Coverage". Journal of the American Man-made Society. 125 (8): 2062–2063.

    doi:10.1021/ja0292501. PMID 12590530.

  48. ^Ikuno, T.; Sainsbury, T.; Okawa, D.; Fréchet, J.M.J.; Zettl, Cool. (June 2007). "Amine-functionalized boron nitride nanotubes". Solid State Communications. 142 (11): 643–646. doi:10.1016/j.ssc.2007.04.010.
  49. ^Sainsbury, Toby; Ikuno, Takashi; Okawa, David; Pacilé, Daniela; Fréchet, Jean M.

    J.; Zettl, Alex (1 September 2007). "Self-Assembly of Gold Nanoparticles at glory Surface of Amine- and Thiol-Functionalized Boron Nitride Nanotubes". The Newspaper of Physical Chemistry C. 111 (35): 12992–12999. doi:10.1021/jp072958n.

  50. ^Han, Wei-Qiang; Zettl, A. (5 April 2004). "Nanocrystal cleaving".

    Applied Physics Letters. 84 (14): 2644–2645. doi:10.1063/1.1695635.

  51. ^Pham, Thang; Fathalizadeh, Aidin; Shevitski, Brian; Turner, Sally; Aloni, Shaul; Zettl, Alex (13 January 2016). "A Universal Wet-Chemistry Route to Metal Filling be in opposition to Boron Nitride Nanotubes". Nano Letters.

    16 (1): 320–325. doi:10.1021/acs.nanolett.5b03874. PMID 26707874.

  52. ^Mickelson, W.; Aloni, S.; Han, Wei-Qiang; Cumings, John; Zettl, A. (18 April 2003). "Packing C60 put it to somebody Boron Nitride Nanotubes". Science. 300 (5618): 467–469. doi:10.1126/science.1082346.

    PMID 12702871. S2CID 206507202.

  53. ^Ishigami, Masa; Sau, Jay Deep; Aloni, Shaul; Cohen, Marvin L.; Zettl, A. (10 February 2005). "Observation of the Giant Stark Colored chalk in Boron-Nitride Nanotubes". Physical Con Letters. 94 (5): 056804. doi:10.1103/PhysRevLett.94.056804.

    PMID 15783676.

  54. ^ abKis, A.; Jensen, K.; Aloni, S.; Mickelson, W.; Zettl, A. (11 July 2006). "Interlayer Forces and Ultralow Sliding Abrasion in Multiwalled Carbon Nanotubes". Physical Review Letters. 97 (2): 025501. doi:10.1103/PhysRevLett.97.025501. PMID 16907454.
  55. ^Jensen, K.; Girit, Ç.; Mickelson, W.; Zettl, A.

    (31 May 2006). "Tunable Nanoresonators Constructed from Telescoping Nanotubes". Physical Survey Letters. 96 (21): 215503. doi:10.1103/PhysRevLett.96.215503. PMID 16803247.

  56. ^Regan, B. C.; Aloni, S.; Jensen, K.; Ritchie, R. O.; Zettl, A. (1 September 2005). "Nanocrystal-Powered Nanomotor".

    Nano Letters. 5 (9): 1730–1733. doi:10.1021/nl0510659. PMID 16159214.

  57. ^Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G.; Cohen, Marvin L.; Zettl, Alex (9 November 2016). "Electrostatically Driven Nanoballoon Actuator".

    Nano Letters. 16 (11): 6787–6791. doi:10.1021/acs.nanolett.6b02394. PMID 27704855.

  58. ^Cumings, John; Zettl, Alex (2002). "Resistance of Telescoping Nanotubes". AIP Conference Proceedings. 633: 227–230. doi:10.1063/1.1514111.
  59. ^Chang, C.

    W.; Okawa, D.; Garcia, H.; Yuzvinsky, Businesslike. D.; Majumdar, A.; Zettl, Excellent. (7 May 2007). "Tunable thermic links". Applied Physics Letters. 90 (19): 193114. doi:10.1063/1.2738187.

  60. ^Cumings, John; Zettl, A.; McCartney, M. R.; Spence, J. C. H. (18 Jan 2002). "Electron Holography of Field-Emitting Carbon Nanotubes".

    Physical Review Letters. 88 (5): 056804. doi:10.1103/PhysRevLett.88.056804. PMID 11863765.

  61. ^Chen, Xing; Kis, Andras; Zettl, A.; Bertozzi, Carolyn R. (15 Can 2007). "A cell nanoinjector home-grown on carbon nanotubes". Proceedings custom the National Academy of Sciences.

    104 (20): 8218–8222. doi:10.1073/pnas.0700567104. PMC 1895932. PMID 17485677.

  62. ^Pham, Thang; Gibb, Ashley L.; Li, Zhenglu; Gilbert, S. Matt; Song, Chengyu; Louie, Steven G.; Zettl, Alex (9 November 2016). "Formation and Dynamics of Electron-Irradiation-Induced Defects in Hexagonal Boron Nitride at Elevated Temperatures".

    Nano Letters. 16 (11): 7142–7147. doi:10.1021/acs.nanolett.6b03442. PMID 27685639.

  63. ^Gilbert, S. Matt; Dunn, Gabriel; Azizi, Amin; Pham, Thang; Shevitski, Brian; Dimitrov, Edgar; Liu, Stanley; Aloni, Shaul; Zettl, Alex (8 Nov 2017). "Fabrication of Subnanometer-Precision Nanopores in Hexagonal Boron Nitride".

    Scientific Reports. 7 (1): 15096. doi:10.1038/s41598-017-12684-x. PMC 5678191. PMID 29118413.

  64. ^Gilbert, S Matt; Pham, Thang; Dogan, Mehmet; Oh, Sehoon; Shevitski, Brian; Schumm, Gabe; Liu, Stanley; Ercius, Peter; Aloni, Shaul; Cohen, Marvin L; Zettl, Alex (28 March 2019).

    "Alternative stacking sequences in hexagonal boron nitride". 2D Materials. 6 (2): 021006. arXiv:1810.04814. doi:10.1088/2053-1583/ab0e24. S2CID 119216315.

  65. ^Zhou, Qin; Zettl, A. (3 June 2013). "Electrostatic graphene loudspeaker". Applied Physics Letters. 102 (22): 223109.

    arXiv:1303.2391. doi:10.1063/1.4806974. S2CID 29754669.

  66. ^Zhou, Qin; Zheng, Jinglin; Onishi, Seita; Crommie, M. F.; Zettl, Alex K. (21 July 2015). "Graphene electrostatic microphone and supersonic radio". Proceedings of the Racial Academy of Sciences. 112 (29): 8942–8946.

    doi:10.1073/pnas.1505800112. PMC 4517232. PMID 26150483.

  67. ^Yan, Aiming; Velasco, Jairo; Kahn, Salman; Watanabe, Kenji; Taniguchi, Takashi; Wang, Feng; Crommie, Michael F.; Zettl, Alex (14 October 2015). "Direct Nurturing of Single- and Few-Layer Influence 2 on h-BN with Bestloved Relative Rotation Angles".

    Nano Letters. 15 (10): 6324–6331. arXiv:1504.06641. doi:10.1021/acs.nanolett.5b01311. PMID 26317240. S2CID 24396802.

  68. ^Yan, Aiming; Chen, Wei; Ophus, Colin; Ciston, Jim; Designer, Yuyuan; Persson, Kristin; Zettl, Alex (25 January 2016). "Identifying iciness stacking sequences in few-layer CVD-grown Mo S 2 by low-energy atomic-resolution scanning transmission electron microscopy".

    Physical Review B. 93 (4): 041420. doi:10.1103/PhysRevB.93.041420.

  69. ^Azizi, Amin; Dogan, Mehmet; Cain, Jeffrey D.; Lee, Kyunghoon; Yu, Xuanze; Shi, Wu; Glazier, Emily C.; Cohen, Marvin L.; Zettl, Alex (23 November 2021). "Experimental and Theoretical Study unravel Possible Collective Electronic States instructions Exfoliable Re-Doped NbS 2".

    ACS Nano. 15 (11): 18297–18304. doi:10.1021/acsnano.1c07526. PMID 34739204. S2CID 243801788.

  70. ^Onishi, Seita; Ugeda, Miguel M.; Zhang, Yi; Chen, Yi; Ojeda‐Aristizabal, Claudia; Ryu, Hyejin; Recipe, Sung‐Kwan; Hussain, Zahid; Shen, Zhi‐Xun; Crommie, Michael F.; Zettl, Alex (December 2016).

    "Selenium capped monolayer NbSe 2 for two‐dimensional superconductivity studies". Physica Status Solidi B. 253 (12): 2396–2399. doi:10.1002/pssb.201600235.

  71. ^Cain, Jeffrey D.; Azizi, Amin; Conrad, Matthias; Griffin, Sinéad M.; Zettl, Alex (20 October 2020). "Layer-dependent topologic phase in a two-dimensional quasicrystal and approximant".

    Proceedings of probity National Academy of Sciences. 117 (42): 26135–26140. doi:10.1073/pnas.2015164117. PMC 7584993. PMID 33020263.

  72. ^Su, Cong; Zhang, Fang; Kahn, Salman; Shevitski, Brian; Jiang, Jingwei; Dai, Chunhui; Ungar, Alex; Park, Ji-Hoon; Watanabe, Kenji; Taniguchi, Takashi; Kong, Jing; Tang, Zikang; Zhang, Wenqing; Wang, Feng; Crommie, Michael; Louie, Steven G.; Aloni, Shaul; Zettl, Alex (August 2022).

    "Tuning shade centres at a twisted hexangular boron nitride interface". Nature Materials. 21 (8): 896–902. doi:10.1038/s41563-022-01303-4. OSTI 1906698. PMID 35835818. S2CID 250535073.

  73. ^Pham, Thang; Oh, Sehoon; Stetz, Patrick; Onishi, Seita; Kisielowski, Christian; Cohen, Marvin L.; Zettl, Alex (20 July 2018).

    "Torsional instability in the single-chain stick of a transition metal trichalcogenide". Science. 361 (6399): 263–266. arXiv:1803.02866. doi:10.1126/science.aat4749. PMID 30026223. S2CID 49896559.

  74. ^Stonemeyer, Scott; Man, Jeffrey D.; Oh, Sehoon; Azizi, Amin; Elasha, Malik; Thiel, Markus; Song, Chengyu; Ercius, Peter; Cohen, Marvin L.; Zettl, Alex (31 March 2021).

    "Stabilization of NbTe3 , VTe3 , and TiTe3 via Nanotube Encapsulation". Journal go together with the American Chemical Society. 143 (12): 4563–4568. arXiv:2009.10869. doi:10.1021/jacs.0c10175. PMID 33258601. S2CID 221856719.

  75. ^Meyer, Scott; Pham, Thang; Oh, Sehoon; Ercius, Peter; Kisielowski, Christian; Cohen, Marvin L.; Zettl, Alex (9 July 2019).

    "Metal-insulator change in quasi-one-dimensional HfTe 3 twist the few-chain limit". Physical Dialogue B. 100 (4): 041403. arXiv:1903.00464. doi:10.1103/PhysRevB.100.041403. S2CID 118830779.

  76. ^Pham, Thang; Oh, Sehoon; Stonemeyer, Scott; Shevitski, Brian; Man, Jeffrey D.; Song, Chengyu; Ercius, Peter; Cohen, Marvin L.; Zettl, Alex (20 May 2020).

    "Emergence of Topologically Nontrivial Spin-Polarized States in a Segmented Linear Chain". Physical Review Letters. 124 (20): 206403. arXiv:2001.06565. doi:10.1103/PhysRevLett.124.206403. PMID 32501077. S2CID 210839580.

  77. ^